1 minute read

This post is written by courtesy of:

以下假设 sample 有 $m$ 个 examples。

The Residual Sum of Squares (RSS) is the sum of the squared residuals

以下三个概念等价 (我无话可说):

  • RSS: Residual Sum of Squares
  • SSR: Sum of Squared Residuals
  • SSE: Sum of Squared Errors
\[RSS = \sum_{i=1}^{m}{e_i^2} = \sum_{i=1}^{m}{(y_i - \hat{f}(x_i))^2}\]

The Mean Squared Error (MSE) is the mean of RSS

\[MSE = \frac{RSS}{m}\]

The Root Mean Squared Error (RMSE) is the square root of MSE

\[RMSE = \sqrt{MSE} = \sqrt{\frac{RSS}{m}}\]

The Residual Standard Error (RSE) is the square root of $\frac{RSS}{\text{degrees of freedom}}$

\[RSE = \sqrt \frac{RSS}{m - p - 1}\]

where

  • $p$ is the number of predictors
    • i.e. $p+1$ is the number of right-hand-side variables, including the intercept, in a regression model
  • $m-p-1$ denotes the degrees of freedom.
\[TSS = \sum_{i=1}^{m}{(y_i - \bar y)^2}\]

where $\bar y$ is the sample mean.

Further we have $Var = \frac{TSS}{m - 1}$

$R^2$ and Adjusted $R^2$

\[\begin{align} & R^2 = 1 - \frac{RSS}{TSS} \newline \text{Adjusted } & R^2 = 1 - \frac{RSS/(m-p-1)}{TSS/(m-1)} = 1 - \frac{m-1}{m-p-1} \frac{RSS}{TSS} \end{align}\]

Chain Reaction

当趋向 overfitting 时(比如 predictor 增多,模型变 flexible 时):

  • RSS ↓
    • MSE ↓
    • RMSE ↓
    • 如果是 predicator 增多,那么 RSE 无法断定是上升还是下降
  • TSS →
  • $R^2$ ↑
  • Adjusted $R^2$ 不好说(这正是 adjustment 的体现)

Comments