3 minute read

0. DictionaryPermalink

English Chinese Symbol
Moment  
nth n 阶  
Raw Moment 原点矩 μn
Central Moment 中心矩 μn
Standardized Moment 标准矩 αn
Mean 平均值 μ
Median 中位数  
Mode 众数  
Variance 方差 σ2
Standard Deviation 标准差 σ
Expectation Operator 期望算子 E[X]
Skewness [sk’ju:nes] 偏度 γ1
Kurtosis [kɜ:’təʊsɪs] 峰度 γ2

1. MomentPermalink

1.1 Definition in PhysicsPermalink

数学中矩的概念来自于物理学。在物理学中,矩,又称动差,是用来表示物体形状的物理量。

实函数(指定义域和值域均为实数域的函数)f(x) 相对于值 cn 阶矩(the nth moment of a real-valued continuous function f of a real variable x about a value c)为:

μn=(xc)nf(x)dx

1.2 Raw MomentPermalink

主要参考 Raw Moment

In statistics, a raw moment of a univariate continuous random variable X is one of a probability density function (a.k.a pdf) f(x) taken about 0 (i.e. c=0).

μn=xnf(x)dx

Of a discrete random variable X:

μn=i=1kxinP(X=xi)

当 n = 1 时,它的意义就是:”X 的取值 xi” 乘以 “Xxi 的概率”,然后求和。

特定地,有 μ0=1

1.3 Central MomentPermalink

主要参考 Central Moment

A central moment of a univariate continuous random variable X is one of a probability density function f(x) taken about the mean (因为 Expectation (== Mean) 也被称为随机变量的 “中心”,所以 c=mean(X) 的 moment 就被命名为 central moment):

μn=(xμ)nf(x)dx

特定地,有 μ0=1μ1=0

1.4 Standardized MomentPermalink

αn=μnσn

特定地,有 α1=0α2=1

2. ExpectationPermalink

2.1 Expectation Equals Arithmetic MeanPermalink

Expectation is defined as 1st raw moment:

μ=μ1=xf(x)dx

Expectation is the arithmetic mean of any random variable coming from any probability distribution,这个不用怀疑,可以参见这篇 Why is expectation the same as the arithmetic mean?

2.2 Expectation OperatorPermalink

其实就是把 μ 看做 a function of x:

E[X]=μ=μ1=xf(x)dx

If Y=g(X), then:

E[Y]=E[g(X)]=g(x)f(x)dx

这个 E 就称为 Expectation Operator。

进而有:

  • E[Xn]=μn
  • E[(Xμ)n]=μn
  • E[(Xμσ)n]=E[(Xμ)n]σn=αn

3. VariancePermalink

Variance is defined as 2nd central moment:

σ2=μ2=(xμ)2f(x)dx=E[(Xμ)2]=E[X2]μ2

4. SkewnessPermalink

Skewness is defined as 3rd standardized moment:

γ1=α3=μ3σ3

Skewness is a measure of asymmetry [əˈsɪmɪtri]:

  • If a distribution is “pulled out” towards higher values (to the right), then it has positive skewness (γ1>0,称为正偏态或右偏态).
  • If it is pulled out toward lower values, then it has negative skewness (γ1<0,称为负偏态或左偏态).
  • A symmetric [sɪ’metrɪk] distribution, e.g., the Gaussian distribution, has zero skewness (γ1=0).
    • 进一步还可以得到:mean == median
      • 如果是 symmetric 且是单峰分布,那么还可以得到:mean == median == mode

注意看图的时候,skewness 是个非常 confusing 的概念:

  • 左图:Negative skew (γ1<0) == The distribution is skewed to the LEFT == Mean is on the left side of the peak
    • while the peak is pulled towards RIGHT
  • 右图:Positive skew (γ1>0) == The distribution is skewed to the RIGHT == Mean is on the right side of the peak
    • while the peak is pulled towards LEFT

所以 skewness 最好不要根据图形去记忆,而应该根据一维坐标轴:D H@ScienceForums.Net:

One way to remember the left/right stuff is that it corresponds with the orientation of the numberline. Since negative numbers are to the left of zero, negative skewness is the same as left-skewed. The same goes for positive skewness and right-skewed.

5. KurtosisPermalink

Kurtosis, from Greek word “kyrtos” for convex, related to word “curve”, is mainly defined by 4th standardized moment:

γ2=α43=μ4σ43

It is also known as excess kurtosis (超值峰度). The “minus 3” at the end of this formula is often explained as a correction to make the kurtosis of the normal distribution equal to zero.

  • If γ2>0,称为尖峰态(leptokurtic, [leptəʊ’kɜ:tɪk])
  • If γ2<0,称为低峰态(platykurtic, [plæ’ti:kɜ:tɪk])。

Comments