less than 1 minute read

DefinitionPermalink

Let (X,dX) and (Y,dY) be metric spaces. A function f:XY is called an isometry or distance-preserving if a,bX:dY(f(a),f(b))=dX(a,b).

Proposition: A isometry is automatically injective.

Proof: If not, there exist abX such that f(a)=f(b). Therefore dY(f(a),f(b))=0 but dX(a,b)0. Contradiction. .

  • 注意:有的定义会要求 isometry 是 bijective 的,但我们这里不采用

Isometric linear transformationPermalink

length-preserving 的 linear transformation 都是 isometry。

  • 注意:length-preserving 意味着没有降维

这些 isometric linear transformation 包括:

  • rotation:绕某个点旋转
  • translation:平移
  • reflection:对照某直线或某平面做镜像
  • glides:先对照直线做 reflection,再沿着这条直线 translation
  • identity

Two geometric figures related by an isometry are said to be geometrically congruent.

Isometry vs HomeomorphismPermalink

Proposition: Any bijective isometry is a homeomorphism between metric spaces.

Proof: 相当于要证明 isometry f 和它的 inverse f1 都是 continuous 的。

ϵ>0:δ=ϵ>0:dX(a,b)<δdY(f(a),f(b))=dX(a,b)<δ=ϵ,所以 f is continuous. (实际上 f 还是 uniformly continuous, with δ=ϵ)

同理可证 f1 是 continuous。

Categories:

Updated:

Comments