10 minute read

OveriewPermalink

Magma(Groupid)(S,)=SetSOpSemigroup(S,)=Magma(S,)AssociativityBand(S,)=Semigroup(S,)Idempotency=Magma(S,)AssociativityIdempotencySemilattice(S,)=Band(S,)Commutativity=Semigroup(S,)IdempotencyCommutativity=Magma(S,)AssociativityIdempotencyCommutativityMonoid(S,,e¯)=Semigroup(S,)Identitye¯AbelianMonoid(S,,e¯)=Monoid(S,,e¯)CommutativityBoundedSemilattice(S,,e¯)=Semilattice(S,)Identitye¯=AbelianMonoid(S,,e¯)IdempotencyGroup(S,,e¯)=Monoid(S,,e¯)InvertibilityAbelianGroup(S,,e¯)=Group(S,,e¯)CommutativityLattice(S,,)Semilattice(S,)Semilattice(S,)<other properties>BoundedLattice(S,,,,)=Lattice(S,,)IdentityIdentityBoundedSemilattice(S,,)BoundedSemilattice(S,,)<other properties>Semiring(Rig)(S,+,×,0¯,1¯)AbelianMonoid(S,+,0¯)Monoid(S,×,1¯)<other properties>Ring(S,+,×,0¯,1¯)=Semiring(S,+,×,0¯,1¯)Invertibility (w.r.t. Addition)AbelianGroup(S,+,0¯)Monoid(S,×,1¯)<other properties>Field(S,+,×,0¯,1¯)=Ring(S,+,×,0¯,1¯)Non-trivialityCommutativityInvertibility (w.r.t. Multiplication on S{0¯})AbelianGroup(S,+,0¯)AbelianGroup(S{0¯},×,1¯)AbelianMonoid(S,×,1¯)<other properties>

AS with 0 OperationPermalink

Set SPermalink

Set is the very basic algebraic structure without any binary operation.

AS with 1 OperationPermalink

Magma (Groupid) (S,)Permalink

A magma (a.k.a. groupid) can be denoted by (S,), such that:

  • S is a set
  • :S×SS is a binary operation
    • 注意这其实表明了 S is closed under

Semigroup Associative Magma (S,)Permalink

A semigroup is simply an associative magma, as:

  • a,b,cS,(ab)c=a(bc)

Semigroup vs GroupPermalink

结构上:

  • Semigroup 是 (S,)
  • Group 是 (S,,e¯)

性质上:

  • Group 是 Invertible Monoid
  • Monoid 是 Semigroup + Identity
  • 所以 Group 一定是 Semigroup
  • Semigroup 是 “没有 identity e¯ (进而) 也没有 inverse” 的 Group

疑问:semigroup 连 monoid 都不如,为何挂着 group 的名字?根据 这个帖子:

In summary, the name “semigroup” comes from the fact that it is halfway between a “magma” (a set with a binary operation) and a “group” (a set with an associative binary operation, an identity element, and an inverse element for each element).

只是这个 “halfway” 离 group 离得有点远……

Band Idempotent Semigroup (S,)Permalink

A band is simply an idempotent semigroup (S,), such that:

  • aS,aa=a

Semilattice Commutative Band (S,)Permalink

本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.

A semilattice is simply a commutative band (S,), such that:

  • a,bS,ab=ba

Bounded Semilattice Semilattice + Identity Idempotent Abelian Monoid (S,,e¯)Permalink

A semilattice (S,) is bounded if an identity element e¯S such that:

  • aS,ae¯=e¯a=a

Monoid Semigroup + Identity (S,,e¯)Permalink

A monoid can be denoted by (S,,e) such that:

  • (S,) is a semigroup
  • e¯S is the identity element w.r.t.
    • i.e. aS,ae¯=e¯a=a

Also written as a tuple (S,) if we consider e¯ associated with internally.

Abelian Monoid = Commutative MonoidPermalink

虽然我们有 ae=ea=a 但这并不意味着我们的 monoid 一定是 commutative 的 (i.e. a,bab=ba)。如果是 commutative 的需要 explicitly 写出来。

同时 commutative monoid 也 a.k.a. abelian monoid.

Group Invertible Monoid (S,,e¯)Permalink

A group is a monoid with inverse.

假设 (S,,e¯) 是 group,我们有:

  • (S,,e¯) 自然也是 monoid
  • aS, there bS such that ab=ba=e¯
    • b is the inverse of a, vice versa

Inverse / Negative / ReciprocalPermalink

你可以把 inverse 看成是一个 unary operation,也可以理解成 “group 中的任意 element 都有一个 inverse element”:

  • 如果 是 addition,a 的 inverse element 一般写成 a
    • 你也可以理解成是 “取 negative” 操作
  • 如果 是 multiplication,a 的 inverse element 一般写成 a1
    • 你也可以理解成是 “取 reciprocal” 操作

Abelian Group = Commutative GroupPermalink

好理解:普通的 monoid 构建出的是普通的 group,那么 abelian monoid 构建出的就是 abelian group。

AS with 2 OperationsPermalink

Lattice (S,,)Permalink

本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.

A lattice is a set with two binary operations, often called (join) and (meet).

注意词义 overloading: 有的教材会把 ab 称为 “join of a,b”,相当于 join == greatest lower bound;同理,也会把 ab 称为 “meet of a,b”,相当于 meet == least upper bound.

我们可以用 (S,,) 表示一个 lattice,它满足:

  • (S,) is a semilattice
    • a.k.a. the join-semilattice
  • (S,) is a semilattice
    • a.k.a. the meet-semilattice
  • absorption laws
    • a,bS,a(ab)=a
    • a,bS,a(ab)=a

Bounded Lattice Lattice + Identities (S,,,,)Permalink

我们可以用 (S,,,,) 表示一个 bounded lattice,它满足:

  • (S,,) is a lattice
  • (S,,) is a bounded semilattice
    • is a.k.a. least element, minimum, or bottom
    • is also denoted by 0¯ or R
  • (S,,) is a bounded semilattice
    • is a.k.a. greatest element, maximum, or top
    • is also denoted by 1¯ or R

Semiring (Rig) (S,+,×,0¯,1¯)Permalink

A semiring is a set with two binary operations, often called + (addition) and × (multiplication).

我们可以用 (S,+,×,0¯,1¯) 表示一个 semiring,它满足:

  • (S,+,0¯) is an abelian monoid
  • (S,×,1¯) is a monoid
  • × is distributive w.r.t. +, i.e. a×(b+c)=(a×b)+(a×c)
  • × has the absorption/annihilation law, i.e. 0¯×a=a×0¯=0¯
    • 0¯ is the absorbing element / annihilating element / annihilator w.r.t. ×

我们这里用 0¯1¯ 来表示 identity elements,以区分具体的数 01

Absorbing Element / Annihilating Element / Annihilator 这些名称都是等价的

Absorption / Annihilation Law: 定义还是性质?Permalink

我们在 ring 的部分可以通过其他三条定义直接推断出 absorption / annihilation law,所以对 ring 而言,这条 law 可以看做是 ring 的一个 property,而不用放到定义中去强调它。

但是对 semiring 而言,无法推断出 absorption / annihilation law,所以就只能把它写到定义中。

我个人的怀疑是先有的 ring,再有的 semiring,然后 semiring 的研究又常用到 absorption / annihilation law,于是就直接整合到 semiring 的定义中去了。

Ring Addition-Invertible Semiring (S,+,×,0¯,1¯)Permalink

我们可以用 (S,+,×,0¯,1¯) 表示一个 ring,它满足:

  • (S,+,×,0¯,1¯) is a semiring
    • but (S,+,0¯) is an abelian group, instead of an abelian monoid in a semiring

Trivial Ring (Zero Ring) Ring with Only 1 ElementPermalink

存在 trivial ring (a.k.a zero ring),即只有一个元素的 ring,比如 ε,它的 0¯=1¯=ε.

Lemma: if 0¯=1¯ then S is a trival ring

Absorption / Annihilation Law 的证明Permalink

Given a ring (S,+,×,0¯,1¯), aS, 有:

  • 因为 0¯+0¯=0¯ (by monoid’s definition on identity)
  • 所以 0¯×a=(0¯+0¯)×a=(0¯×a)+(0¯×a)
  • 等式两边同时 + 加上 (0¯×a)inverse,可得 0¯=0¯×a

我们称 0¯ 为 left annihilator (w.r.t. ×)。

同理 0¯ 也是 right annihilator (因为同样可以推出 aS, 有 0¯=a×0¯).

Field Non-Trivial, Commutative, Almost Multiplication-Invertible Ring (S,+,×,0¯,1¯)Permalink

A field is a commutative ring where 0¯1¯ and aS{0¯} there is an inverse for a w.r.t. ×.

我们揉碎了说。假设用 (S,+,×,0¯,1¯) 表示一个 field,它满足:

  • (S,+,×,0¯,1¯) 自然也是一个 commutative ring
  • (S,+,0¯) is an abelian group
    • a.k.a. the additive group within the field
  • (S,×,1¯) is an abelian monoid
  • (S{0¯},×,1¯) is an abelian group
    • a.k.a. the multiplicative group within the field
  • × is distributive w.r.t. +, i.e. a×(b+c)=(a×b)+(a×c)
  • 0¯1¯
    • this requirement is by convention to exclude trivial ring

Vector-related ASPermalink

Vector Space (V,+,0,,1¯)KPermalink

我们在 Digest of Essence of Linear Algebra 的末尾提了一嘴,但没有说严格的数学定义,这里补充一下。

A vector space over a scalar field K, say (K,,,0¯,1¯), is a non-empty set of vectors V with with two binary operations:

  1. vector addition +:V×VV, and
  2. scalar multiplication :K×VV,

which satisfy the two closure axioms C1,C2 as well as the eight vector space axioms A1A8:

  • C1 (Closure under vector addition) Given v,wV, v+wV
  • C2 (Closure under scalar multiplication) Given vV and αK, αvV

For arbitrary vectors u,v,wV, and arbitrary scalars α,βK:

  • A1 (Commutativity of addition) v+w=w+v
  • A2 (Associativity of addition) (u+v)+w=u+(v+w)
  • A3 (Existence of a zero vector) 0V such that 0+v=v+0=v
  • A4 (Existence of additive inverses) vV, vV such that v+(v)=(v)+v=0
  • A5 (Distributivity of scalar multiplication over vector addition) α(v+w)=αv+αw
  • A6 (Distributivity of scalar addition over scalar multiplication) (αβ)v=αv+βv
  • A7 (Associativity of scalar multiplication) (αβ)v=α(βv)
  • A8 (Scalar multiplication with 1¯ is the identity) 1¯v=v

注意:

  • 最常见的 K 即是 R,但也可以是任何抽象的 field,只要满足 axioms 即可
  • 仅讨论 set V 和 set K 的话:
    • 如果 VK:
      • 那么 scalar multiplication :K×VV 这个 operator 就不满足最基础的 Monoid 的要求,所以 (V,,1¯) 就啥也不是
      • 但是 (V,+,0) 构成 Abelian Group
    • 如果 V=K:
      • 你可以:
        • 假设 1¯=1
        • 假设 vector addition + 等价于
        • 假设 scalar multiplication 等价于
      • 但即使这样,也很难论证 (V{0},,1) 一定能构成 Abelian Group
        • 所以很难说 vector space 一定能构成 field
      • 但如果你反过来看,任意的 field K 都能构成一个 vector space (K,,0¯,,1¯)K
        • 我们总结成:Any field is a vector space over itself.

Algebra Vector Space + Bilinear Vector Multiplication (V,+,×,0,,1¯)KPermalink

我们可以用 (V,+,×,0,,1¯)K 表示一个 Algebra,它满足:

  • (V,+,0,,1¯)K is a vector space over a field (K,,,0¯,1¯)
  • vector multiplication ×:V×VV is a bilinear mapping, i.e. it satisfies:
    1. Left distributivity w.r.t. vector addition: w×(u+v)=w×u+w×v
    2. Right distributivity w.r.t. vector addition: (u+v)×w=u×w+v×w
    3. Compatibility with scalars: (αu)×(βv)=(αβ)(u×v)

一般我们称:

  • V is an algebra over field K
    • or V is a K-algebra
  • K is the base field of V

仅讨论 set V 和 set K 的话:

  • 如果 VK:
    • 类似 vector space 的讨论,(V,,1¯) 还是啥也不是
    • 类似 vector space 的讨论,(V,+,0) 还是能构成 Abelian Group
    • 但是 (V,+,×,0) 就很尴尬,因为没有 1,所以它够不上 Semiring
      • 于是有的教材会强行要求 × 的定义要带上 1,使得 (V,+,×,0,1) 构成 Ring
        • 带有 1 的 Algebra 也称 Unitary Algebra
  • 如果 V=K:
    • 类似地,任意的 field K 都能构成一个 Algebra (K,,,0¯,,1¯)K
      • 我们总结成:Any field is an algebra over itself.

Categories:

Updated:

Comments