Elementary Algebraic Structures
OveriewPermalink
AS with 0 OperationPermalink
Set Permalink
Set is the very basic algebraic structure without any binary operation.
AS with 1 OperationPermalink
Magma (Groupid) Permalink
A magma (a.k.a. groupid) can be denoted by
is a set is a binary operation- 注意这其实表明了
is closed under
- 注意这其实表明了
Semigroup Associative Magma Permalink
A semigroup is simply an associative magma, as:
Semigroup vs GroupPermalink
结构上:
- Semigroup 是
- Group 是
性质上:
- Group 是 Invertible Monoid
- Monoid 是 Semigroup + Identity
- 所以 Group 一定是 Semigroup
- Semigroup 是 “没有 identity
(进而) 也没有 inverse” 的 Group
疑问:semigroup 连 monoid 都不如,为何挂着 group 的名字?根据 这个帖子:
In summary, the name “semigroup” comes from the fact that it is halfway between a “magma” (a set with a binary operation) and a “group” (a set with an associative binary operation, an identity element, and an inverse element for each element).
只是这个 “halfway” 离 group 离得有点远……
Band Idempotent Semigroup Permalink
A band is simply an idempotent semigroup
Semilattice Commutative Band Permalink
本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.
A semilattice is simply a commutative band
Bounded Semilattice Semilattice + Identity Idempotent Abelian Monoid Permalink
A semilattice
Monoid Semigroup + Identity Permalink
A monoid can be denoted by
is a semigroup is the identity element w.r.t.- i.e.
- i.e.
Also written as a tuple
Abelian Monoid Commutative MonoidPermalink
虽然我们有
同时 commutative monoid 也 a.k.a. abelian monoid.
Group Invertible Monoid Permalink
A group is a monoid with inverse.
假设
自然也是 monoid , there such that is the inverse of , vice versa
Inverse / Negative / ReciprocalPermalink
你可以把 inverse 看成是一个 unary operation,也可以理解成 “group 中的任意 element 都有一个 inverse element”:
- 如果
是 addition, 的 inverse element 一般写成- 你也可以理解成是 “取 negative” 操作
- 如果
是 multiplication, 的 inverse element 一般写成- 你也可以理解成是 “取 reciprocal” 操作
Abelian Group Commutative GroupPermalink
好理解:普通的 monoid 构建出的是普通的 group,那么 abelian monoid 构建出的就是 abelian group。
AS with 2 OperationsPermalink
Lattice Permalink
本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.
A lattice is a set with two binary operations, often called
注意词义 overloading: 有的教材会把
我们可以用
is a semilattice- a.k.a. the join-semilattice
is a semilattice- a.k.a. the meet-semilattice
- absorption laws
Bounded Lattice Lattice + Identities Permalink
我们可以用
is a lattice is a bounded semilattice is a.k.a. least element, minimum, or bottom is also denoted by or
is a bounded semilattice is a.k.a. greatest element, maximum, or top is also denoted by or
Semiring (Rig) Permalink
A semiring is a set with two binary operations, often called
我们可以用
is an abelian monoid is a monoid is distributive w.r.t. , i.e. has the absorption/annihilation law, i.e. is the absorbing element / annihilating element / annihilator w.r.t.
我们这里用
Absorbing Element / Annihilating Element / Annihilator 这些名称都是等价的
Absorption / Annihilation Law: 定义还是性质?Permalink
我们在 ring 的部分可以通过其他三条定义直接推断出 absorption / annihilation law,所以对 ring 而言,这条 law 可以看做是 ring 的一个 property,而不用放到定义中去强调它。
但是对 semiring 而言,无法推断出 absorption / annihilation law,所以就只能把它写到定义中。
我个人的怀疑是先有的 ring,再有的 semiring,然后 semiring 的研究又常用到 absorption / annihilation law,于是就直接整合到 semiring 的定义中去了。
Ring Addition-Invertible Semiring Permalink
我们可以用
is a semiring- but
is an abelian group, instead of an abelian monoid in a semiring
- but
Trivial Ring (Zero Ring) Ring with Only 1 ElementPermalink
存在 trivial ring (a.k.a zero ring),即只有一个元素的 ring,比如
Lemma: if
Absorption / Annihilation Law 的证明Permalink
Given a ring
- 因为
(by monoid’s definition on identity) - 所以
- 等式两边同时
加上 的 inverse,可得
我们称
同理
Field Non-Trivial, Commutative, Almost Multiplication-Invertible Ring Permalink
A field is a commutative ring where
我们揉碎了说。假设用
自然也是一个 commutative ring is an abelian group- a.k.a. the additive group within the field
is an abelian monoid is an abelian group- a.k.a. the multiplicative group within the field
is distributive w.r.t. , i.e.- this requirement is by convention to exclude trivial ring
Vector-related ASPermalink
Vector Space Permalink
我们在 Digest of Essence of Linear Algebra 的末尾提了一嘴,但没有说严格的数学定义,这里补充一下。
A vector space over a scalar field
- vector addition
, and - scalar multiplication
,
which satisfy the two closure axioms
(Closure under vector addition) Given , (Closure under scalar multiplication) Given and ,
For arbitrary vectors
(Commutativity of addition) (Associativity of addition) (Existence of a zero vector) such that (Existence of additive inverses) , such that (Distributivity of scalar multiplication over vector addition) (Distributivity of scalar addition over scalar multiplication) (Associativity of scalar multiplication) (Scalar multiplication with is the identity)
注意:
- 最常见的
即是 ,但也可以是任何抽象的 field,只要满足 axioms 即可 - 仅讨论 set
和 set 的话:- 如果
:- 那么 scalar multiplication
这个 operator 就不满足最基础的 Monoid 的要求,所以 就啥也不是 - 但是
构成 Abelian Group
- 那么 scalar multiplication
- 如果
:- 你可以:
- 假设
- 假设 vector addition
等价于 - 假设 scalar multiplication
等价于
- 假设
- 但即使这样,也很难论证
一定能构成 Abelian Group- 所以很难说 vector space 一定能构成 field
- 但如果你反过来看,任意的 field
都能构成一个 vector space- 我们总结成:Any field is a vector space over itself.
- 你可以:
- 如果
Algebra Vector Space + Bilinear Vector Multiplication Permalink
我们可以用
is a vector space over a field- vector multiplication
is a bilinear mapping, i.e. it satisfies:- Left distributivity w.r.t. vector addition:
- Right distributivity w.r.t. vector addition:
- Compatibility with scalars:
- Left distributivity w.r.t. vector addition:
一般我们称:
is an algebra over field- or
is a -algebra
- or
is the base field of
仅讨论 set
- 如果
:- 类似 vector space 的讨论,
还是啥也不是 - 类似 vector space 的讨论,
还是能构成 Abelian Group - 但是
就很尴尬,因为没有 ,所以它够不上 Semiring- 于是有的教材会强行要求
的定义要带上 ,使得 构成 Ring- 带有
的 Algebra 也称 Unitary Algebra
- 带有
- 于是有的教材会强行要求
- 类似 vector space 的讨论,
- 如果
:- 类似地,任意的 field
都能构成一个 Algebra- 我们总结成:Any field is an algebra over itself.
- 类似地,任意的 field
Comments