7 minute read


\[\begin{align} \operatorname{Magma \, (Groupid)} \, (S, \circ) &= \operatorname{Set} \, S \, \Join \, \operatorname{Op} \, \circ \newline \operatorname{Semigroup} \, (S, \circ) &= \operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \newline \newline \operatorname{Band} \, (S, \circ) &= \operatorname{Semigroup} \, (S, \circ) \, \Join \, \text{Idempotency} \newline &= \operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \, \Join \, \text{Idempotency} \newline \operatorname{Semilattice} \, (S, \circ) &= \operatorname{Band} \, (S, \circ) \, \Join \, \text{Commutativity} \newline &=\operatorname{Semigroup} \, (S, \circ) \, \Join \, \text{Idempotency} \Join \, \text{Commutativity} \newline &=\operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \, \Join \, \text{Idempotency} \Join \, \text{Commutativity} \newline \newline \operatorname{Monoid} \, (S, \circ, \bar{e}) &= \operatorname{Semigroup} \, (S, \circ) \, \Join \, \operatorname{Identity} \, \bar{e} \newline \operatorname{Abelian Monoid} \, (S, \circ, \bar{e}) &= \operatorname{Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Commutativity} \newline \newline \operatorname{Bounded Semilattice} \, (S, \circ, \bar{e}) &= \operatorname{Semilattice} \, (S, \circ) \, \Join \, \operatorname{Identity} \, \bar{e} \newline &= \operatorname{Abelian Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Idempotency} \newline \newline \operatorname{Group} \, (S, \circ, \bar{e}) &= \operatorname{Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Invertibility} \newline \operatorname{Abelian Group} \, (S, \circ, \bar{e}) &= \operatorname{Group} \, (S, \circ, \bar{e}) \, \Join \, \text{Commutativity} \newline \newline \operatorname{Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}) &\vdash \operatorname{Semilattice} \, (S, \boldsymbol{\vee}) \newline &\vdash \operatorname{Semilattice} \, (S, \boldsymbol{\wedge}) \newline &\vdash \text{<other properties>} \newline \operatorname{Bounded \, Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top) &= \operatorname{Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}) \, \Join \, \operatorname{Identity} \, \bot \, \Join \, \operatorname{Identity} \, \top \newline &\vdash \operatorname{Bounded Semilattice} \, (S, \boldsymbol{\vee}, \bot) \newline &\vdash \operatorname{Bounded Semilattice} \, (S, \boldsymbol{\wedge}, \top) \newline &\vdash \text{<other properties>} \newline \newline \operatorname{Semiring \, (Rig)} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &\vdash \operatorname{Abelian Monoid} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \operatorname{Ring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &= \operatorname{Semiring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) \, \Join \, \text{Invertibility (w.r.t. Addition)} \newline &\vdash \operatorname{Abelian Group} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \operatorname{Field} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &= \operatorname{Ring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) \, \Join \, \text{Non-triviality} \, \Join \, \text{Commutativity} \newline & \, \, \Join \, \text{Invertibility (w.r.t. Multiplication on } S \setminus \lbrace \bar{0} \rbrace \text{)} \newline &\vdash \operatorname{Abelian Group} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Abelian Group} \, (S \setminus \lbrace \bar{0} \rbrace, \boldsymbol{\times}, \bar{1}) \newline &\vdash \operatorname{Abelian Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \end{align}\]

AS with 0 Operation

Set $\Rightarrow S$

Set is the very basic algebraic structure without any binary operation.

AS with 1 Operation

Magma (Groupid) $\Rightarrow (S, \circ)$

A magma (a.k.a. groupid) can be denoted by $(S, \circ)$, such that:

  • $S$ is a set
  • $\circ: S \times S \to S$ is a binary operation
    • 注意这其实表明了 $S$ is closed under $\circ$

Semigroup $\Rightarrow$ Associative Magma $(S, \circ)$

A semigroup is simply an associative magma, as:

  • $\forall a, b, c \in S, (a \circ b) \circ c = a \circ (b \circ c)$

Semigroup vs Group


  • Semigroup 是 $(S, \circ)$
  • Group 是 $(S, \circ, \bar{e})$


  • Group 是 Invertible Monoid
  • Monoid 是 Semigroup + Identity
  • 所以 Group 一定是 Semigroup
  • Semigroup 是 “没有 identity $\bar{e}$ (进而) 也没有 inverse” 的 Group

疑问:semigroup 连 monoid 都不如,为何挂着 group 的名字?根据 这个帖子:

In summary, the name “semigroup” comes from the fact that it is halfway between a “magma” (a set with a binary operation) and a “group” (a set with an associative binary operation, an identity element, and an inverse element for each element).

只是这个 “halfway” 离 group 离得有点远……

Band $\Rightarrow$ Idempotent Semigroup $(S, \circ)$

A band is simply an idempotent semigroup $(S, \circ)$, such that:

  • $\forall a \in S, a \circ a = a$

Semilattice $\Rightarrow$ Commutative Band $(S, \circ)$

本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.

A semilattice is simply a commutative band $(S, \circ)$, such that:

  • $\forall a,b \in S, \, a \circ b = b \circ a$

Bounded Semilattice $\Rightarrow$ Semilattice + Identity $\Rightarrow$Idempotent Abelian Monoid $(S, \circ, \bar{e})$

A semilattice $(S, \circ)$ is bounded if $\exists$ an identity element $\bar{e} \in S$ such that:

  • $\forall a \in S, \, a \circ \bar{e} = \bar{e} \circ a = a$

Monoid $\Rightarrow$ Semigroup + Identity $\Rightarrow$ $(S, \circ, \bar{e})$

A monoid can be denoted by $(S, \circ, e)$ such that:

  • $(S, \circ)$ is a semigroup
  • $\bar{e} \in S$ is the identity element w.r.t. $\circ$
    • i.e. $\forall a \in S, \, a \circ \bar{e} = \bar{e} \circ a = a$

Also written as a tuple $(S, \circ)$ if we consider $\bar{e}$ associated with $\circ$ internally.

Abelian Monoid $=$ Commutative Monoid

虽然我们有 $a \circ e = e \circ a = a$ 但这并不意味着我们的 monoid 一定是 commutative 的 (i.e. $\forall a,b$ 有 $a \circ b = b \circ a$)。如果是 commutative 的需要 explicitly 写出来。

同时 commutative monoid 也 a.k.a. abelian monoid.

Group $\Rightarrow$ Invertible Monoid $(S, \circ, \bar{e})$

A group is a monoid with inverse.

假设 $(S, \circ, \bar{e})$ 是 group,我们有:

  • $(S, \circ, \bar{e})$ 自然也是 monoid
  • $\forall a \in S$, there $\exists b \in S$ such that $a \circ b = b \circ a = \bar{e}$
    • $b$ is the inverse of $a$, vice versa

Inverse / Negative / Reciprocal

你可以把 inverse 看成是一个 unary operation,也可以理解成 “group 中的任意 element 都有一个 inverse element”:

  • 如果 $\circ$ 是 addition,$a$ 的 inverse element 一般写成 $-a$
    • 你也可以理解成是 “取 negative” 操作
  • 如果 $\circ$ 是 multiplication,$a$ 的 inverse element 一般写成 $a^{-1}$
    • 你也可以理解成是 “取 reciprocal” 操作

Abelian Group $=$ Commutative Group

好理解:普通的 monoid 构建出的是普通的 group,那么 abelian monoid 构建出的就是 abelian group。

AS with 2 Operations

Lattice $\Rightarrow (S, \boldsymbol{\vee}, \boldsymbol{\wedge})$

本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.

A lattice is a set with two binary operations, often called $\boldsymbol{\vee}$ (join) and $\boldsymbol{\wedge}$ (meet).

注意词义 overloading: 有的教材会把 $a \vee b$ 的 称为 “join of $a,b$”,相当于 join == greatest lower bound;同理,也会把 $a \wedge b$ 的 称为 “meet of $a,b$”,相当于 meet == least upper bound.

我们可以用 $(S, \boldsymbol{\vee}, \boldsymbol{\wedge})$ 表示一个 lattice,它满足:

  • $(S, \boldsymbol{\vee})$ is a semilattice
    • a.k.a. the join-semilattice
  • $(S, \boldsymbol{\wedge})$ is a semilattice
    • a.k.a. the meet-semilattice
  • absorption laws
    • $\forall a, b \in S, \, a \vee (a \wedge b) = a$
    • $\forall a, b \in S, \, a \wedge (a \vee b) = a$

Bounded Lattice $\Rightarrow$ Lattice + Identities $\Rightarrow (S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top)$

我们可以用 $(S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top)$ 表示一个 bounded lattice,它满足:

  • $(S, \boldsymbol{\vee}, \boldsymbol{\wedge})$ is a lattice
  • $(S, \boldsymbol{\vee}, \bot)$ is a bounded semilattice
    • $\bot$ is a.k.a. least element, minimum, or bottom
    • $\bot$ is also denoted by $\bar{0}$ or $\bigvee R$
  • $(S, \boldsymbol{\wedge}, \top)$ is a bounded semilattice
    • $\top$ is a.k.a. greatest element, maximum, or top
    • $\top$ is also denoted by $\bar{1}$ or $\bigwedge R$

Semiring (Rig) $\Rightarrow (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$

A semiring is a set with two binary operations, often called $\boldsymbol{+}$ (addition) and $\boldsymbol{\times}$ (multiplication).

我们可以用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 semiring,它满足:

  • $(S, \boldsymbol{+}, \bar0)$ is an abelian monoid
  • $(S, \boldsymbol{\times}, \bar1)$ is a monoid
  • $\boldsymbol{\times}$ is distributive w.r.t. $\boldsymbol{+}$, i.e. $a \boldsymbol{\times} (b \boldsymbol{+} c) = (a \boldsymbol{\times} b) \boldsymbol{+} (a \boldsymbol{\times} c)$
  • $\boldsymbol{\times}$ has the absorption/annihilation law, i.e. $\bar0 \boldsymbol{\times} a = a \boldsymbol{\times} \bar0 = \bar0$
    • $\bar0$ is the absorbing element / annihilating element / annihilator w.r.t. $\boldsymbol{\times}$

我们这里用 $\bar0$ 和 $\bar1$ 来表示 identity elements,以区分具体的数 $0$ 和 $1$

Absorbing Element / Annihilating Element / Annihilator 这些名称都是等价的

Absorption / Annihilation Law: 定义还是性质?

我们在 ring 的部分可以通过其他三条定义直接推断出 absorption / annihilation law,所以对 ring 而言,这条 law 可以看做是 ring 的一个 property,而不用放到定义中去强调它。

但是对 semiring 而言,无法推断出 absorption / annihilation law,所以就只能把它写到定义中。

我个人的怀疑是先有的 ring,再有的 semiring,然后 semiring 的研究又常用到 absorption / annihilation law,于是就直接整合到 semiring 的定义中去了。

Ring $\Rightarrow$ Addition-Invertible Semiring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$

我们可以用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 ring,它满足:

  • $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ is a semiring
    • but $(S, \boldsymbol{+}, \bar0)$ is an abelian group, instead of an abelian monoid in a semiring

Trivial Ring (Zero Ring) $\Rightarrow$ Ring with Only 1 Element

存在 trivial ring (a.k.a zero ring),即只有一个元素的 ring,比如 ${\varepsilon}$,它的 $\bar0 = \bar1 = \varepsilon$.

Lemma: if $\bar0 = \bar1$ $\implies$ then $S$ is a trival ring

Absorption / Annihilation Law 的证明

Given a ring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$, $\forall a \in S$, 有:

  • 因为 $\bar0 \boldsymbol{+} \bar0 = \bar0$ (by monoid’s definition on identity)
  • 所以 $\bar0 \boldsymbol{\times} a = (\bar0 \boldsymbol{+} \bar0) \boldsymbol{\times} a = (\bar0 \boldsymbol{\times} a) \boldsymbol{+} (\bar0 \boldsymbol{\times} a)$
  • 等式两边同时 $\boldsymbol{+}$ 加上 $(\bar0 \boldsymbol{\times} a)$ 的 inverse,可得 $\bar0 = \bar0 \boldsymbol{\times} a$

我们称 $\bar0$ 为 left annihilator (w.r.t. $\boldsymbol{\times}$)。

同理 $\bar0$ 也是 right annihilator (因为同样可以推出 $\forall a \in S$, 有 $\bar0 = a \boldsymbol{\times} \bar0$).

Field $\Rightarrow$ Non-Trivial, Commutative, Almost Multiplication-Invertible Ring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$

A field is a commutative ring where $\bar0 \neq \bar1$ and $\forall a \in S \setminus \lbrace \bar0 \rbrace$ there is an inverse for $a$ w.r.t. $\boldsymbol{\times}$.

我们揉碎了说。假设用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 field,它满足:

  • $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 自然也是一个 commutative ring
  • $(S, \boldsymbol{+}, \bar0)$ is an abelian group
    • a.k.a. the additive group within the field
  • $(S, \boldsymbol{\times}, \bar1)$ is an abelian monoid
  • $(S \setminus \lbrace \bar0 \rbrace, \boldsymbol{\times}, \bar1)$ is an abelian group
    • a.k.a. the multiplicative group within the field
  • $\boldsymbol{\times}$ is distributive w.r.t. $\boldsymbol{+}$, i.e. $a \boldsymbol{\times} (b \boldsymbol{+} c) = (a \boldsymbol{\times} b) \boldsymbol{+} (a \boldsymbol{\times} c)$
  • $\bar0 \neq \bar1$
    • this requirement is by convention to exclude trivial ring