Elementary Algebraic Structures
Overiew
\[\begin{align} \operatorname{Magma \, (Groupid)} \, (S, \circ) &= \operatorname{Set} \, S \, \Join \, \operatorname{Op} \, \circ \newline \operatorname{Semigroup} \, (S, \circ) &= \operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \newline \newline \operatorname{Band} \, (S, \circ) &= \operatorname{Semigroup} \, (S, \circ) \, \Join \, \text{Idempotency} \newline &= \operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \, \Join \, \text{Idempotency} \newline \operatorname{Semilattice} \, (S, \circ) &= \operatorname{Band} \, (S, \circ) \, \Join \, \text{Commutativity} \newline &=\operatorname{Semigroup} \, (S, \circ) \, \Join \, \text{Idempotency} \Join \, \text{Commutativity} \newline &=\operatorname{Magma} \, (S, \circ) \, \Join \, \text{Associativity} \, \Join \, \text{Idempotency} \Join \, \text{Commutativity} \newline \newline \operatorname{Monoid} \, (S, \circ, \bar{e}) &= \operatorname{Semigroup} \, (S, \circ) \, \Join \, \operatorname{Identity} \, \bar{e} \newline \operatorname{Abelian Monoid} \, (S, \circ, \bar{e}) &= \operatorname{Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Commutativity} \newline \newline \operatorname{Bounded Semilattice} \, (S, \circ, \bar{e}) &= \operatorname{Semilattice} \, (S, \circ) \, \Join \, \operatorname{Identity} \, \bar{e} \newline &= \operatorname{Abelian Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Idempotency} \newline \newline \operatorname{Group} \, (S, \circ, \bar{e}) &= \operatorname{Monoid} \, (S, \circ, \bar{e}) \, \Join \, \text{Invertibility} \newline \operatorname{Abelian Group} \, (S, \circ, \bar{e}) &= \operatorname{Group} \, (S, \circ, \bar{e}) \, \Join \, \text{Commutativity} \newline \newline \operatorname{Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}) &\vdash \operatorname{Semilattice} \, (S, \boldsymbol{\vee}) \newline &\vdash \operatorname{Semilattice} \, (S, \boldsymbol{\wedge}) \newline &\vdash \text{<other properties>} \newline \operatorname{Bounded \, Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top) &= \operatorname{Lattice} \, (S, \boldsymbol{\vee}, \boldsymbol{\wedge}) \, \Join \, \operatorname{Identity} \, \bot \, \Join \, \operatorname{Identity} \, \top \newline &\vdash \operatorname{Bounded Semilattice} \, (S, \boldsymbol{\vee}, \bot) \newline &\vdash \operatorname{Bounded Semilattice} \, (S, \boldsymbol{\wedge}, \top) \newline &\vdash \text{<other properties>} \newline \newline \operatorname{Semiring \, (Rig)} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &\vdash \operatorname{Abelian Monoid} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \operatorname{Ring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &= \operatorname{Semiring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) \, \Join \, \text{Invertibility (w.r.t. Addition)} \newline &\vdash \operatorname{Abelian Group} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \operatorname{Field} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) &= \operatorname{Ring} \, (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1) \, \Join \, \text{Non-triviality} \, \Join \, \text{Commutativity} \newline & \, \, \Join \, \text{Invertibility (w.r.t. Multiplication on } S \setminus \lbrace \bar{0} \rbrace \text{)} \newline &\vdash \operatorname{Abelian Group} \, (S, \boldsymbol{+}, \bar{0}) \newline &\vdash \operatorname{Abelian Group} \, (S \setminus \lbrace \bar{0} \rbrace, \boldsymbol{\times}, \bar{1}) \newline &\vdash \operatorname{Abelian Monoid} \, (S, \boldsymbol{\times}, \bar{1}) \newline &\vdash \text{<other properties>} \newline \end{align}\]AS with 0 Operation
Set $\Rightarrow S$
Set is the very basic algebraic structure without any binary operation.
AS with 1 Operation
Magma (Groupid) $\Rightarrow (S, \circ)$
A magma (a.k.a. groupid) can be denoted by $(S, \circ)$, such that:
- $S$ is a set
- $\circ: S \times S \to S$ is a binary operation
- 注意这其实表明了 $S$ is closed under $\circ$
Semigroup $\Rightarrow$ Associative Magma $(S, \circ)$
A semigroup is simply an associative magma, as:
- $\forall a, b, c \in S, (a \circ b) \circ c = a \circ (b \circ c)$
Semigroup vs Group
结构上:
- Semigroup 是 $(S, \circ)$
- Group 是 $(S, \circ, \bar{e})$
性质上:
- Group 是 Invertible Monoid
- Monoid 是 Semigroup + Identity
- 所以 Group 一定是 Semigroup
- Semigroup 是 “没有 identity $\bar{e}$ (进而) 也没有 inverse” 的 Group
疑问:semigroup 连 monoid 都不如,为何挂着 group 的名字?根据 这个帖子:
In summary, the name “semigroup” comes from the fact that it is halfway between a “magma” (a set with a binary operation) and a “group” (a set with an associative binary operation, an identity element, and an inverse element for each element).
只是这个 “halfway” 离 group 离得有点远……
Band $\Rightarrow$ Idempotent Semigroup $(S, \circ)$
A band is simply an idempotent semigroup $(S, \circ)$, such that:
- $\forall a \in S, a \circ a = a$
Semilattice $\Rightarrow$ Commutative Band $(S, \circ)$
本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.
A semilattice is simply a commutative band $(S, \circ)$, such that:
- $\forall a,b \in S, \, a \circ b = b \circ a$
Bounded Semilattice $\Rightarrow$ Semilattice + Identity $\Rightarrow$Idempotent Abelian Monoid $(S, \circ, \bar{e})$
A semilattice $(S, \circ)$ is bounded if $\exists$ an identity element $\bar{e} \in S$ such that:
- $\forall a \in S, \, a \circ \bar{e} = \bar{e} \circ a = a$
Monoid $\Rightarrow$ Semigroup + Identity $\Rightarrow$ $(S, \circ, \bar{e})$
A monoid can be denoted by $(S, \circ, e)$ such that:
- $(S, \circ)$ is a semigroup
- $\bar{e} \in S$ is the identity element w.r.t. $\circ$
- i.e. $\forall a \in S, \, a \circ \bar{e} = \bar{e} \circ a = a$
Also written as a tuple $(S, \circ)$ if we consider $\bar{e}$ associated with $\circ$ internally.
Abelian Monoid $=$ Commutative Monoid
虽然我们有 $a \circ e = e \circ a = a$ 但这并不意味着我们的 monoid 一定是 commutative 的 (i.e. $\forall a,b$ 有 $a \circ b = b \circ a$)。如果是 commutative 的需要 explicitly 写出来。
同时 commutative monoid 也 a.k.a. abelian monoid.
Group $\Rightarrow$ Invertible Monoid $(S, \circ, \bar{e})$
A group is a monoid with inverse.
假设 $(S, \circ, \bar{e})$ 是 group,我们有:
- $(S, \circ, \bar{e})$ 自然也是 monoid
- $\forall a \in S$, there $\exists b \in S$ such that $a \circ b = b \circ a = \bar{e}$
- $b$ is the inverse of $a$, vice versa
Inverse / Negative / Reciprocal
你可以把 inverse 看成是一个 unary operation,也可以理解成 “group 中的任意 element 都有一个 inverse element”:
- 如果 $\circ$ 是 addition,$a$ 的 inverse element 一般写成 $-a$
- 你也可以理解成是 “取 negative” 操作
- 如果 $\circ$ 是 multiplication,$a$ 的 inverse element 一般写成 $a^{-1}$
- 你也可以理解成是 “取 reciprocal” 操作
Abelian Group $=$ Commutative Group
好理解:普通的 monoid 构建出的是普通的 group,那么 abelian monoid 构建出的就是 abelian group。
AS with 2 Operations
Lattice $\Rightarrow (S, \boldsymbol{\vee}, \boldsymbol{\wedge})$
本文是从 AS 角度定义,从 Poset 的角度定义请参考 Order-Theoretic Definition of Lattices.
A lattice is a set with two binary operations, often called $\boldsymbol{\vee}$ (join) and $\boldsymbol{\wedge}$ (meet).
注意词义 overloading: 有的教材会把 $a \vee b$ 的 值 称为 “join of $a,b$”,相当于 join == greatest lower bound;同理,也会把 $a \wedge b$ 的 值 称为 “meet of $a,b$”,相当于 meet == least upper bound.
我们可以用 $(S, \boldsymbol{\vee}, \boldsymbol{\wedge})$ 表示一个 lattice,它满足:
- $(S, \boldsymbol{\vee})$ is a semilattice
- a.k.a. the join-semilattice
- $(S, \boldsymbol{\wedge})$ is a semilattice
- a.k.a. the meet-semilattice
- absorption laws
- $\forall a, b \in S, \, a \vee (a \wedge b) = a$
- $\forall a, b \in S, \, a \wedge (a \vee b) = a$
Bounded Lattice $\Rightarrow$ Lattice + Identities $\Rightarrow (S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top)$
我们可以用 $(S, \boldsymbol{\vee}, \boldsymbol{\wedge}, \bot, \top)$ 表示一个 bounded lattice,它满足:
- $(S, \boldsymbol{\vee}, \boldsymbol{\wedge})$ is a lattice
- $(S, \boldsymbol{\vee}, \bot)$ is a bounded semilattice
- $\bot$ is a.k.a. least element, minimum, or bottom
- $\bot$ is also denoted by $\bar{0}$ or $\bigvee R$
- $(S, \boldsymbol{\wedge}, \top)$ is a bounded semilattice
- $\top$ is a.k.a. greatest element, maximum, or top
- $\top$ is also denoted by $\bar{1}$ or $\bigwedge R$
Semiring (Rig) $\Rightarrow (S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$
A semiring is a set with two binary operations, often called $\boldsymbol{+}$ (addition) and $\boldsymbol{\times}$ (multiplication).
我们可以用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 semiring,它满足:
- $(S, \boldsymbol{+}, \bar0)$ is an abelian monoid
- $(S, \boldsymbol{\times}, \bar1)$ is a monoid
- $\boldsymbol{\times}$ is distributive w.r.t. $\boldsymbol{+}$, i.e. $a \boldsymbol{\times} (b \boldsymbol{+} c) = (a \boldsymbol{\times} b) \boldsymbol{+} (a \boldsymbol{\times} c)$
- $\boldsymbol{\times}$ has the absorption/annihilation law, i.e. $\bar0 \boldsymbol{\times} a = a \boldsymbol{\times} \bar0 = \bar0$
- $\bar0$ is the absorbing element / annihilating element / annihilator w.r.t. $\boldsymbol{\times}$
我们这里用 $\bar0$ 和 $\bar1$ 来表示 identity elements,以区分具体的数 $0$ 和 $1$
Absorbing Element / Annihilating Element / Annihilator 这些名称都是等价的
Absorption / Annihilation Law: 定义还是性质?
我们在 ring 的部分可以通过其他三条定义直接推断出 absorption / annihilation law,所以对 ring 而言,这条 law 可以看做是 ring 的一个 property,而不用放到定义中去强调它。
但是对 semiring 而言,无法推断出 absorption / annihilation law,所以就只能把它写到定义中。
我个人的怀疑是先有的 ring,再有的 semiring,然后 semiring 的研究又常用到 absorption / annihilation law,于是就直接整合到 semiring 的定义中去了。
Ring $\Rightarrow$ Addition-Invertible Semiring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$
我们可以用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 ring,它满足:
- $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ is a semiring
- but $(S, \boldsymbol{+}, \bar0)$ is an abelian group, instead of an abelian monoid in a semiring
Trivial Ring (Zero Ring) $\Rightarrow$ Ring with Only 1 Element
存在 trivial ring (a.k.a zero ring),即只有一个元素的 ring,比如 ${\varepsilon}$,它的 $\bar0 = \bar1 = \varepsilon$.
Lemma: if $\bar0 = \bar1$ $\implies$ then $S$ is a trival ring
Absorption / Annihilation Law 的证明
Given a ring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$, $\forall a \in S$, 有:
- 因为 $\bar0 \boldsymbol{+} \bar0 = \bar0$ (by monoid’s definition on identity)
- 所以 $\bar0 \boldsymbol{\times} a = (\bar0 \boldsymbol{+} \bar0) \boldsymbol{\times} a = (\bar0 \boldsymbol{\times} a) \boldsymbol{+} (\bar0 \boldsymbol{\times} a)$
- 等式两边同时 $\boldsymbol{+}$ 加上 $(\bar0 \boldsymbol{\times} a)$ 的 inverse,可得 $\bar0 = \bar0 \boldsymbol{\times} a$
我们称 $\bar0$ 为 left annihilator (w.r.t. $\boldsymbol{\times}$)。
同理 $\bar0$ 也是 right annihilator (因为同样可以推出 $\forall a \in S$, 有 $\bar0 = a \boldsymbol{\times} \bar0$).
Field $\Rightarrow$ Non-Trivial, Commutative, Almost Multiplication-Invertible Ring $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$
A field is a commutative ring where $\bar0 \neq \bar1$ and $\forall a \in S \setminus \lbrace \bar0 \rbrace$ there is an inverse for $a$ w.r.t. $\boldsymbol{\times}$.
我们揉碎了说。假设用 $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 表示一个 field,它满足:
- $(S, \boldsymbol{+}, \boldsymbol{\times}, \bar0, \bar1)$ 自然也是一个 commutative ring
- $(S, \boldsymbol{+}, \bar0)$ is an abelian group
- a.k.a. the additive group within the field
- $(S, \boldsymbol{\times}, \bar1)$ is an abelian monoid
- $(S \setminus \lbrace \bar0 \rbrace, \boldsymbol{\times}, \bar1)$ is an abelian group
- a.k.a. the multiplicative group within the field
- $\boldsymbol{\times}$ is distributive w.r.t. $\boldsymbol{+}$, i.e. $a \boldsymbol{\times} (b \boldsymbol{+} c) = (a \boldsymbol{\times} b) \boldsymbol{+} (a \boldsymbol{\times} c)$
- $\bar0 \neq \bar1$
- this requirement is by convention to exclude trivial ring
Vector-related AS
Vector Space $\Rightarrow (V, \boldsymbol{+}, \vec{0}, \boldsymbol{\cdot}, \bar1)_K$
我们在 Digest of Essence of Linear Algebra 的末尾提了一嘴,但没有说严格的数学定义,这里补充一下。
A vector space over a scalar field $K$, say $(K, \oplus, \otimes, \bar0, \bar1)$, is a non-empty set of vectors $V$ with with two binary operations:
- vector addition $\boldsymbol{+}: V \times V \to V$, and
- scalar multiplication $\boldsymbol{\cdot}: K \times V \to V$,
which satisfy the two closure axioms $C1, C2$ as well as the eight vector space axioms $A1 - A8$:
- $C1$ (Closure under vector addition) Given $\boldsymbol{v}, \boldsymbol{w} \in V$, $\boldsymbol{v} \boldsymbol{+} \boldsymbol{w} \in V$
- $C2$ (Closure under scalar multiplication) Given $\boldsymbol{v} \in V$ and $\alpha \in K$, $\alpha \boldsymbol{v} \in V$
For arbitrary vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$, and arbitrary scalars $\alpha, \beta \in K$:
- $A1$ (Commutativity of addition) $\boldsymbol{v + w} = \boldsymbol{w + v}$
- $A2$ (Associativity of addition) $(\boldsymbol{u + v}) \boldsymbol{+} \boldsymbol{w} = \boldsymbol{u} \boldsymbol{+} (\boldsymbol{v+w})$
- $A3$ (Existence of a zero vector) $\exists \vec{0} \in V$ such that $\vec{0} \boldsymbol{+} \boldsymbol{v} = \boldsymbol{v} \boldsymbol{+} \vec{0} = \boldsymbol{v}$
- $A4$ (Existence of additive inverses) $\forall \boldsymbol{v} \in V$, $\exists \boldsymbol{-v} \in V$ such that $\boldsymbol{v} \boldsymbol{+} (\boldsymbol{-v}) = (\boldsymbol{-v}) \boldsymbol{+} \boldsymbol{v} = \vec{0}$
- $A5$ (Distributivity of scalar multiplication over vector addition) $\alpha (\boldsymbol{v+w}) = \alpha \boldsymbol{v} \boldsymbol{+} \alpha \boldsymbol{w}$
- $A6$ (Distributivity of scalar addition over scalar multiplication) $(\alpha \oplus \beta) \boldsymbol{v} = \alpha \boldsymbol{v} \boldsymbol{+} \beta\boldsymbol{v}$
- $A7$ (Associativity of scalar multiplication) $(\alpha \otimes \beta) \boldsymbol{v} = \alpha (\beta \boldsymbol{v})$
- $A8$ (Scalar multiplication with $\bar1$ is the identity) $\bar1 \boldsymbol{v} = \boldsymbol{v}$
注意:
- 最常见的 $K$ 即是 $\mathbb{R}$,但也可以是任何抽象的 field,只要满足 axioms 即可
- 仅讨论 set $V$ 和 set $K$ 的话:
- 如果 $V \neq K$:
- 那么 scalar multiplication $\boldsymbol{\cdot}: K \times V \to V$ 这个 operator 就不满足最基础的 Monoid 的要求,所以 $(V, \boldsymbol{\cdot}, \bar1)$ 就啥也不是
- 但是 $(V, \boldsymbol{+}, \vec{0})$ 构成 Abelian Group
- 如果 $V = K$:
- 你可以:
- 假设 $\bar1 = \vec1$
- 假设 vector addition $\boldsymbol{+}$ 等价于 $\oplus$
- 假设 scalar multiplication $\boldsymbol{\cdot}$ 等价于 $\otimes$
- 但即使这样,也很难论证 $(V \setminus \lbrace \vec{0} \rbrace, \boldsymbol{\cdot}, \vec{1})$ 一定能构成 Abelian Group
- 所以很难说 vector space 一定能构成 field
- 但如果你反过来看,任意的 field $K$ 都能构成一个 vector space $(K, \oplus, \bar{0}, \otimes, \bar1)_{K}$
- 我们总结成:Any field is a vector space over itself.
- 你可以:
- 如果 $V \neq K$:
Algebra $\Rightarrow$ Vector Space + Bilinear Vector Multiplication $\Rightarrow (V, \boldsymbol{+}, \boldsymbol{\times}, \vec{0}, \boldsymbol{\cdot}, \bar1)_K$
我们可以用 $(V, \boldsymbol{+}, \boldsymbol{\times}, \vec{0}, \boldsymbol{\cdot}, \bar1)_K$ 表示一个 Algebra,它满足:
- $(V, \boldsymbol{+}, \vec{0}, \boldsymbol{\cdot}, \bar1)_K$ is a vector space over a field $(K, \oplus, \otimes, \bar0, \bar1)$
- vector multiplication $\boldsymbol{\times} : V \times V \to V$ is a bilinear mapping, i.e. it satisfies:
- Left distributivity w.r.t. vector addition: $\boldsymbol{w} \boldsymbol{\times} (\boldsymbol{u+v}) = \boldsymbol{w \times u} \boldsymbol{+} \boldsymbol{w} \boldsymbol{\times} \boldsymbol{v}$
- Right distributivity w.r.t. vector addition: $(\boldsymbol{u + v}) \boldsymbol{\times} \boldsymbol{w} = \boldsymbol{u \times w} \boldsymbol{+} \boldsymbol{v \times w}$
- Compatibility with scalars: $(\alpha \boldsymbol{u}) \boldsymbol{\times} (\beta \boldsymbol{v}) = (\alpha \beta) (\boldsymbol{u} \boldsymbol{\times} \boldsymbol{v})$
一般我们称:
- $V$ is an algebra over field $K$
- or $V$ is a $K$-algebra
- $K$ is the base field of $V$
仅讨论 set $V$ 和 set $K$ 的话:
- 如果 $V \neq K$:
- 类似 vector space 的讨论,$(V, \boldsymbol{\cdot}, \bar1)$ 还是啥也不是
- 类似 vector space 的讨论,$(V, \boldsymbol{+}, \vec{0})$ 还是能构成 Abelian Group
- 但是 $(V, \boldsymbol{+}, \boldsymbol{\times}, \vec{0})$ 就很尴尬,因为没有 $\vec{1}$,所以它够不上 Semiring
- 于是有的教材会强行要求 $\boldsymbol{\times}$ 的定义要带上 $\vec{1}$,使得 $(V, \boldsymbol{+}, \boldsymbol{\times}, \vec{0}, \vec{1})$ 构成 Ring
- 带有 $\vec{1}$ 的 Algebra 也称 Unitary Algebra
- 于是有的教材会强行要求 $\boldsymbol{\times}$ 的定义要带上 $\vec{1}$,使得 $(V, \boldsymbol{+}, \boldsymbol{\times}, \vec{0}, \vec{1})$ 构成 Ring
- 如果 $V = K$:
- 类似地,任意的 field $K$ 都能构成一个 Algebra $(K, \oplus, \otimes, \bar{0}, \otimes, \bar1)_{K}$
- 我们总结成:Any field is an algebra over itself.
- 类似地,任意的 field $K$ 都能构成一个 Algebra $(K, \oplus, \otimes, \bar{0}, \otimes, \bar1)_{K}$
Comments