Order-Theoretic Definition of Lattices (Poset == Lattice)
引子:Pre-ordering on MonoidsPermalink
某些 Elementary Algebraic Structures 由其定义可以很自然地引出一些 ordering 的结构,比如 wikipedia: Monoid 说:
Any commutative monoid is endowed with its algebraic preordering
, defined by if there exists such that .
并不是说 “只有 commutative monoid 才有 pre-order”,Non-commutative 的 monoid 也可以有,见 讨论。可能是 commutative monoid 的 pre-order 更普遍,具体的细节我们不用深究。
Order-Theoretic Definition of SemilatticesPermalink
Poset = Partially Ordered Set. 这个简写还蛮常用的。
Theorem 2.1: Meet semilattices 与 Posets 等价
(1) Meet Semilattice
In a meet semilattice
(2) Poset
Conversely, given a poset
注意
- comparable:
,于是 - comparable:
,于是 - incomparable:
,于是 ,更严格来说是
我们来证明 Theorem 2.1 (1) 中的
Proof: (Reflexive)
- 因为 semilattice 是 idempotent 的,所以
,所以
(Antisymmetric)
- 若
,则 - 若
,则 - 若
和 同时成立,根据 semilattice 的 commutative 性质,我们有 ,相当于
(Transitive)
- 若
,则 - 若
,则 - 若
,根据 semilattice 的 associative 性质,我们有 ,于是
于是
同样的思路也可以证明 Theorem 2.1 (2) 中的
Theorem 2.2: Join semilattices 与 Posets 等价
(1) Join Semilattice
In a meet semilattice
(2) Poset
Conversely, given a poset
Order-Theoretic Definition of LatticesPermalink
Theorem 2.3: Lattices 与 Posets 等价
(1) Lattice
In a lattice
- a greatest lower bound
, and - a least upper bound
.
(2) Poset
Conversely, given a poset
- a greatest lower bound
, and - a least upper bound
,
define
, and .
Then
Claim: Given a lattice
Proof: (1)
我们有 absorption law:
我们可以调换
当
将
所以
(2)
结合这个 claim,我们可以看到 Theorem 2.3 (1) 中的 “define
也就是意味着,”用
更精炼的定义Permalink
前面说 “
Definition 1: A poset
Definition 2: A poset that is both a meet-semilattice and a join-semilattice is a lattice.
Observation 1: Every finite meet-semilattice (resp. join-semilattice)
Observation 2: Every finite lattice
Proposition 1: Every finite meet-semilattice (resp. join-semilattice) also bounded by
Proof: 假设
构造
明显
考虑
结论成立。
Comments