5 minute read

引子:Pre-ordering on MonoidsPermalink

某些 Elementary Algebraic Structures 由其定义可以很自然地引出一些 ordering 的结构,比如 wikipedia: Monoid 说:

Any commutative monoid is endowed with its algebraic preordering , defined by xy if there exists z such that x+z=y.

并不是说 “只有 commutative monoid 才有 pre-order”,Non-commutative 的 monoid 也可以有,见 讨论。可能是 commutative monoid 的 pre-order 更普遍,具体的细节我们不用深究。

Order-Theoretic Definition of SemilatticesPermalink

Poset = Partially Ordered Set. 这个简写还蛮常用的。

Theorem 2.1: Meet semilattices 与 Posets 等价

(1) Meet Semilattice (S,) Poset (S,)

In a meet semilattice (S,), define xyxy=x. Then (S,) is a poset in which pair of elements (x,y) has a greatest lower bound glb(x,y)=xy.

(2) Poset (S,) Join Semilattice (S,)

Conversely, given a poset (S,) in which pair of elements (x,y) has a greatest lower bound glb(x,y), define xy=glb(x,y). Then (S,) is a semilattice.

注意 glb(x,y)=xy 这个值不一定等于 x 或者 y。考虑 Theorem 2.1 (1) 中 comparable vs incomparable 的情况:

  • comparable: xyxy=x,于是 glb(x,y)=x
  • comparable: yxxy=y,于是 glb(x,y)=y
  • incomparable: xyxyx and xyy,于是 glb(x,y)x and glb(x,y)y,更严格来说是 glb(x,y)<x and glb(x,y)<y

我们来证明 Theorem 2.1 (1) 中的 (S,) is a poset

Proof: (Reflexive)

  • 因为 semilattice 是 idempotent 的,所以 xx=x,所以 xx

(Antisymmetric)

  • xy,则 xy=x
  • yx,则 yx=y
  • xyyx 同时成立,根据 semilattice 的 commutative 性质,我们有 xy=yx,相当于 x=y

(Transitive)

  • xy,则 xy=x
  • yz,则 yz=y
  • xyz,根据 semilattice 的 associative 性质,我们有 xz=(xy)z=x(yz)=xy=x,于是 xz

于是 (S,) is a poset.

同样的思路也可以证明 Theorem 2.1 (2) 中的 (S,) is semilattice.

Theorem 2.2: Join semilattices 与 Posets 等价

(1) Join Semilattice (S,) Poset (S,)

In a meet semilattice (S,), define xyxy=x. Then (S,) is a poset in which pair of elements (x,y) has a least upper bound lub(x,y)=xy.

(2) Poset (S,) Join Semilattice (S,)

Conversely, given a poset (S,) in which pair of elements (x,y) has a least upper bound lub(x,y), define xy=lub(x,y). Then (S,) is a semilattice.

Order-Theoretic Definition of LatticesPermalink

Theorem 2.3: Lattices 与 Posets 等价

(1) Lattice (S,,) Poset (S,)

In a lattice (S,,), define xyxy=x. Then (S,) is a poset in which pair of elements (x,y) has

  • a greatest lower bound glb(x,y)=xy, and
  • a least upper bound lub(x,y)=xy.

(2) Poset (S,) Lattice (S,,)

Conversely, given a poset (S,) in which pair of elements (x,y) has

  • a greatest lower bound glb(x,y), and
  • a least upper bound lub(x,y),

define

  • xy=glb(x,y), and
  • xy=lub(x,y).

Then (S,,) is a lattice.

Claim: Given a lattice (S,,), xy=xxy=y

Proof: (1) xy=xxy=y

我们有 absorption law:

(1)x,yS,x(xy)=x

我们可以调换 x,y,把 absorption law 转写成:

(2)x,yS,y(yx)=y

xy=x 时,因为 lattice 的 commutative 性质,我们有:

(3)xy=yx=x

(3) 带入 (2),并再次根据 commutative 性质,得到:

(4)yx=y=xy

所以 xy=xxy=y 成立。

(2) xy=xxy=y 证明类似

结合这个 claim,我们可以看到 Theorem 2.3 (1) 中的 “define xyxy=x” 本质是:

xyxy=xxy=y

也就是意味着,”用 去定义 ” 和 “用 去定义 ” 是等效的。

更精炼的定义Permalink

前面说 “ pair of elements (x,y) of S has a greatest lower bound glb(x,y)”,其实可以递归描述成 “ nonempty finite subset of S has a meet”,于是我们有:

Definition 1: A poset S is a meet-semilattice (resp. join-semilattice) if nonempty finite subset of S has a meet (resp. join).

Definition 2: A poset that is both a meet-semilattice and a join-semilattice is a lattice.

Observation 1: Every finite meet-semilattice (resp. join-semilattice) S is bounded by S (resp. S)

Observation 2: Every finite lattice S is bounded by S and S

Proposition 1: Every finite meet-semilattice (resp. join-semilattice) also bounded by S (resp. S) is a lattice.

Proof: 假设 S 是一个 finite meet-semilattice also bounded by S. 往证: pair of elements x,yS has a join.

构造 Sxy={zSxz and yz}. 因为 S 是 finite meet-semilattice 且 SxyS 的 finite subset,所以 Sxy has a meet m. 往证:m is the join of x,y.

明显 xSxy 的一个 lower bound,由于 mSxy 的 meet, i.e. greatest lower bound,所以 xm;同理 ym。所以 mx,y 的一个 upper bound。往证:m is the least upper bound of x,y.

考虑 x,y upper bound m,一定有 mSxy,且由于 Sxy 的 meet 是 m,所以 mm,所以 m is the least upper bound of x,y

结论成立。

ReferencesPermalink

Categories:

Updated:

Comments