Divergence / Gradient / Laplace Operator
注意这里反复使用了
DivergencePermalink
Quote from Wikipedia: Divergence:
Let
, , be a system of Cartesian coordinates in 3-dimensional Euclidean space, and let , , be the corresponding basis of unit vectors. The divergence of a continuously differentiable vector field is defined as the scalar-valued function:
注意:
- 写法。
其实就是 ,它其实是一个 vector - 这里
明显不是 dot product,但是计算方法类似,最后的结果是一个 scalar - Gradient 的写法
不带这个 dot
Divergence 的物理意义Permalink
Quote from Erik Anson’s answer on Quora:
Imagine a fluid, with the vector field representing the velocity of the fluid at each point in space. Divergence measures the net flow of fluid out of (i.e., diverging from) a given point. If fluid is instead flowing into that point, the divergence will be negative.
A point or region with positive divergence is often referred to as a “source” (of fluid, or whatever the field is describing), while a point or region with negative divergence is a “sink”.
Quote from Better Explained - Vector Calculus: Understanding Divergence:
The bigger the flux density (positive or negative), the stronger the flux source or sink. A div of zero means there’s no net flux change in side the region.
从这个角度来看,divergence 更像是 gradient of vector fields
Laplace OperatorPermalink
注意我们把 laplace operator 写作
which happens to be the
I.e.
注意
考虑
- 如果你在
的 local minimum ,你周围的 gradient 全部流出 (任意方向都是 ascending),divergence 是 highly positive,所以 是 gradient 的 source - 如果你在
的 local maximum ,你周围的 gradient 全部流入 (任意方向都是 descending),divergence 是 highly negative,所以 是 gradient 的 sink
Comments