2 minute read

注意这里反复使用了 ,但要注意的是, 并不是一个有统一定义的 operator,它只是一个符号而已,在不同的高阶 operator 定义中有不同的解读和记法。具体可以参见 Wikipedia: Del


DivergencePermalink

Quote from Wikipedia: Divergence:

Let x, y, z be a system of Cartesian coordinates in 3-dimensional Euclidean space, and let i, j, k be the corresponding basis of unit vectors. The divergence of a continuously differentiable vector field F=Ui+Vj+Wk is defined as the scalar-valued function:

divF=F=(x,y,z)(U,V,W)=Ux+Vy+Wz.

注意:

  1. 写法。F=Ui+Vj+Wk 其实就是 F=[UVW],它其实是一个 vector
  2. 这里 F 明显不是 dot product,但是计算方法类似,最后的结果是一个 scalar
  3. Gradient 的写法 f 不带这个 dot

Divergence 的物理意义Permalink

Quote from Erik Anson’s answer on Quora:

Imagine a fluid, with the vector field representing the velocity of the fluid at each point in space. Divergence measures the net flow of fluid out of (i.e., diverging from) a given point. If fluid is instead flowing into that point, the divergence will be negative.

A point or region with positive divergence is often referred to as a “source” (of fluid, or whatever the field is describing), while a point or region with negative divergence is a “sink”.

Quote from Better Explained - Vector Calculus: Understanding Divergence:

The bigger the flux density (positive or negative), the stronger the flux source or sink. A div of zero means there’s no net flux change in side the region.

从这个角度来看,divergence 更像是 gradient of vector fields

Laplace OperatorPermalink

注意我们把 laplace operator 写作 2 其实是有原因的。其实你对 gradient field 求 divergence,就有:

f(x,y,z)=(x,y,z)(fx(x,y,z),fy(x,y,z),fz(x,y,z))=2fx2(x,y,z)+2fy2(x,y,z)+2fz2(x,y,z)=2f(x,y,z)

which happens to be the lap of f(x,y,z).

I.e. lapf=div(gradf)

注意 仍然不是 dot product,而且我们把这个结果写成 2 也是人为规定的,完全是为了简便记法,所以并不什么特别的 operator 叠加法则。

考虑 2f 的物理含义:

  • 如果你在 f 的 local minimum a,你周围的 gradient 全部流出 a (任意方向都是 ascending),divergence 是 highly positive,所以 a 是 gradient 的 source
  • 如果你在 f 的 local maximum b,你周围的 gradient 全部流入 b (任意方向都是 descending),divergence 是 highly negative,所以 b 是 gradient 的 sink

Comments