11 minute read

0. ReferencesPermalink

  • https://staff.fnwi.uva.nl/d.j.n.vaneijck2/software/demo_s5/EREL.pdf
  • https://www.ellerman.org/book-draft-the-logic-of-partitions/

1. CoverPermalink

Definition: Given a set A, a cover of A, denoted by κ={A1,A2,,An}, is a family of subsets of A (i.e. AiA), which satisfies:

  1. κ
    • I.e. Ai
  2. κ=A

Cover Similarity RelationPermalink

If κ is a cover of A, then the relation RA×A given by

R={(x,y)A×AAiκ such that xAi and yAi}

is a similarity relation.

Cover Similarity RelationPermalink

If R is a similarity relation on A, given an element aA, the similarity class of a is defined as [a]R={aAaRa}.

Then the family of subsets of A, denoted by κ, given by

κ={[a]RaA}

is a cover of A.

Fusion vs Fission (in Haskell)Permalink

fusion 和 fission 首先是核物理的术语:

  • fusion: 核聚变
  • fission: 核裂变

Haskell 中用来形容对 cover 的变形,非常形象地说明了变形的方向:

  • the fusion of a cover the finest coarsening of the cover that turns it into a partition
  • the fission of a cover the coarsest refinement of the cover that turns it into a partition

2. PartitionPermalink

Definition: Given a set A, a partition of A, denoted by π={A1,A2,,An}, is a family of subsets of A (i.e. AiA), which satisfies:

  1. π is a cover of A
  2. Ai,Ajπ, AiAjAiAj=
    • We call elements of π pairwise disjoint or mutually exclusive
    • Furthermore, π=

Definition: The elements of π are called the blocks, parts, or cells, of the partition.

Partition Equivalence RelationPermalink

If π={A1,A2,,An} is a partition on set A, the relation R induced by the partition π, given by

x,yA,xRyAiπ such that xAi and yAi

is an equivalence relation.

Partition Equivalence RelationPermalink

Similarly, if R is an equivalence relation on A, given an element aA, the equivalence class of a is defined as [a]R={aAaRa}.

E.g. If x=2yx=y(mod2) (where x,yN), then equivalence relation =2 split N into 2 equivalence classes, odd numbers and even numbers.

If R is an equivalence relation on any non-empty set A, then the distinct set of equivalence classes of R, given by

π={[a]RaA}

forms a partition on A.

Element aA 的 equivalence class 一定是 partition π 的某个 block,i.e. Akπ such that [a]R=Ak

Partition Equivalence Relation,这也就是说 set A 上的 equivalence relation R 和对应的 partition π 是等价的,所以也有教材写成 π=A/R.

A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory.

IndexPermalink

Definition: We define the index of equivalence relation R, denoted by #(R), as the number of equivalence classes of R.

Definition: We define the index of partition π, as the number of blocks in π, i.e. |π|

3. Closure PropertiesPermalink

Closure under Union: ✅ Similarities (Covers) ❌ Equivalences (Partitions)Permalink

以下我们把 similarity relation 简称为 similarity,把 equivalence relation 简称为 equivalence。

在 cover 和 partition 上定义 “集合的 union 操作 “ 并不很直观,所以我们转去 relation 上定义 union 操作,毕竟 relation 本质就是 (x,y) pairs 的集合。

假设有 relation R1,R2,那么 R1R2={(x,y)(x,y)R1 or (x,y)R2}

Proposition 1:

  1. If R1,R2 are similarities on A, then R1R2 is also a similarity on A
    • I.e. similarities are closed under union
  2. If R1,R2 are equivalences on A, then R1R2 is also a similarity on A
  3. If R1,R2 are equivalences on A, then R1R2 is not necessarily an equivalence on A
    • I.e. equivalences are NOT closed under union

Proof: (1) Since R1 and R2 are both reflexive, then R1R2 must also be reflexive. Formally, construct I={(x,x)xA}, then IR1 and IR2, thus IR1R2.

Since R1 and R2 are both symmetric, then R1R2 must also be symmetric. Formally, consider (x,y)R1R2.

  • If (x,y)R1, then (y,x)R1 by symmetry;
  • If (x,y)R2, then (y,x)R2 by symmetry.

Either case we have (y,x)R1R2.

Therefore R1R2 is reflexive and symmetric, qualified as a similarity.

(2) Obviously, following (1)

(3) Counter example:

R1={(1,1),(1,2),(2,1),(2,2),(3,3)}R2={(1,1),(2,2),(2,3),(3,2),(3,3)}R1R2={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}

Since (3,2) and (2,1) are R1R2, but (3,1)R1R2, then R1R2 is not transitive, thus not an equivalence.

这意味着我们可以通过 ”similarities 的 union“ 去定义 ”cover 的 union“,只是这两个 union 不是同样的定义。我们用 表示 “集合的 union”,用 表示 “cover 的 union”。于是有:

κ1κ2={[a]R1R2aA}

但对 partitions 而言,π1π2 不一定是 partition,但一定是 cover

Closure under Intersection: ✅ Similarities (Covers) ✅ Equivalences (Partitions)Permalink

假设有 relation R1,R2,那么 R1R2={(x,y)(x,y)R1 and (x,y)R2}

Proposition 2:

  1. Similarities are closed under intersection
  2. Equivalences are closed under intersection

Proof: (1) Similar to (2)

(2) Suppose R1,R2 are equivalences.

Since R1 and R2 are both reflexive, then R1R2 must also be reflexive. (Follow the idea in the proof of Proposition 1)

Since R1 and R2 are both symmetric, then R1R2 must also be symmetric. (Follow the idea in the proof of Proposition 1)

Since R1 and R2 are both transitive, then R1R2 must also be transitive. Consider (x,y)R1R2, and (y,z)R1R2, then:

  1. (x,y)R1
  2. (y,z)R1
  3. (x,y)R2
  4. (y,z)R2

Since R1 is transitive, (x,z)R1 stands (bullet 1 and 2); since R2 is transitive, (x,z)R2 stands (bullet 3 and 4). Therefore (x,z)R1R2, thus R1R2 is transitive.

Therefore R1R2 is reflexive, symmetric, and transitive, qualified as an equivalence.

这意味着我们可以通过 ”similarities/equivalences 的 intersection“ 去定义 ”cover/partition 的 intersection“,只是这两个 intersection 不是同样的定义。我们用 表示 “集合的 intersection”,用 表示 “cover/partition 的 intersection”。于是有:

κ1κ2={[a]R1R2aA}π1π2={[a]R1R2aA}

但我们其实还有另一种定义 π1π2 的方法,非常巧妙 (或者巧合?):

π1π2={XiYjXiπ1,Yjπ2,XiYj}

我们可以看个例子:

  • A={1,2,3,4}
  • π1={{1},{2,3},{4}}
  • π2={{1,2},{3},{4}}
  • R1={(1,1),(2,2),(2,3),(3,2),(3,3),(4,4)}
  • R2={(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)}
  • π1π2={{1},{2},{3},{4}}
  • R1R2={(1,1),(2,2),(3,3),(4,4)}

4. Partition LatticePermalink

构建 Lattice 的思路Permalink

假设 Πn={π1,π2,,πBn} 为集合 [n]={1,2,,n} 上所有的 partition。

|Πn|=Bk 这个值被称为 Bell Number,它还蛮复杂的,有需要时再研究。

我们已知的情报有:

  • 可以取 ={{1},{2},,{n}}
    • i.e. the finest partition
  • 可以取 ={[n]}={{1,2,,n}}
    • i.e. the coarsest partition
  • 可以定义 partition 的 meet π1π2=π1π2

所以即使暂时没有 join 的定义,根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义Proposition 1,我们也可以确认 Πn 是一个 lattice。

注意我们这里的思路:

  1. 开局一个 partition 的集合 Π={π1,π2,,πn},注意它是 finite 的
  2. 若我们能定义一个 meet operation :Π×ΠΠ,那么就能定义出一个 relation such that π1π2π1π2=π1
  3. 若 relation 是 partial order,那么 (Π,) 就是个 poset
  4. 根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义Definition 1,既然 (Π,) 是个 finite poset,那么它 (Π,,) 就是个 meet-semilattice
  5. 再根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义Proposition 1, (Π,,,) 也可以升级为 lattice

开拓思路:因为 partition 本质是个 equivalence,所以 partition lattice 本质也是个 equivalence lattice?

meet 的两种定义Permalink

给定 partition lattice Π,我们定义 :=,而 :Π×ΠΠ 的定义有两种:

(1)π1π2={[a]R1R2aA}(2)π1π2={XiYjXiπ1,Yjπ2,XiYj}

“finer-than” relation 的两种释义Permalink

给定 partition lattice Π,我们可以定义一个 “finer-than” 的 partial order

π1π2π1π2=π1

π1π2, 我们称:

  • π1 is finer than π2
  • π2 is coarser than π1

同时根据 meet 的第二个定义,当 π1π2 , i.e. π1π2=π1 时,有:

Xiπ1,Yjπ2,XiYjXiYj=Xi

所以 也可以定义为:

π1π2Xiπ1,Yjπ2 such that XiYj

又因为 partition 的 pairwise disjoint 的特性,我们可以确定 Yjπ2 is a union of one or more Xiπ1,这也意味着,index 方面有 |π1||π2|.

我们再回头看 meet 的第一个定义,当 π1π2 , i.e. π1π2=π1 时,我们可以推出:

aA,[a]R1R2=[a]R1

它也意味着:

R1R2=R1R1R2

所以在 relation cardinality 方面有 |R1||R2|

是 partial order,证明可以参考后面 join 的定义

Coarsening & RefinementPermalink

词义 overloading 警告!Given a partition π, we can adjust it in opposite directions:

  1. “to make π coarser (than itself/before)”
    • 这个动作我们称为 “to coarsen π
    • 这个 procedure 我们称为 “the coarsening of π
    • 最后得到一个新 partition ψ 满足 πψ,这个结果 ψ 我们也称 “a coarsening of π
  2. “to make π finer (than itself/before)”
    • 这个动作我们称为 “to refine π
    • 这个 procedure 我们称为 “the refining/refinement of π
    • 最后得到一个新 partition ψ 满足 ψπ,这个结果 ψ 我们称 “a refinement of π

总结下规律:

  • Refining:
    • 使得 π={{1},{2},,{n}} 靠拢
    • 使得 |π|,意味着 equivalence class 更细碎
    • 使得 |R|,意味着 equivalence 的要求更严苛 (只有特定的几个元素才有 equivalence 关系)
  • Coarsening:
    • 使得 π={{1,2,,n}} 靠拢
    • 使得 |π|,意味着 equivalence class 更融合
    • 使得 |R|,意味着 equivalence 的要求更水 (大多数元素都可以有 equivalence 关系)

Closure of R 一定是对 π 的 coarsening。假定 R 的某个 closure 是 R+,且 R+ 对应的 partition 是 π+。因为 RR+,所以 |R||R+|,对应 ππ+,所以说是对 π 的 coarsening

join 的定义Permalink

我们已知 π1π2 不一定是 partition (但一定是 cover),所以一定是不能定义 := 的,它连 :Π×ΠΠ 这个最基础的要求都达不到。

但如果我们能取 π1π2 背后的 relation R1R2 的 transitive closure,i.e. 把 R1R2 升级为一个 equivalence,i.e. 把 π1π2 升级为一个 partition,那么这第一步的 :Π×ΠΠ 就成功了。后续只要能证明 引出的 是 partial order,那么一切都会好起来的。

我们先定义几个符号:

  • Given a partition π={A1,,An} on A, define R(π)={(x,y)A×AAiπ such that xAi and yAi}
    • I.e. R(π) is the backbone relation R of partition π
  • Transitive closure operator kt:(A×A)(A×A)

我们定义:

R(π1π2)=kt(R(π1)R(π2))π1π2={[a]kt(R(π1)R(π2))aA}π1π2π1π2=π2

Claim: The relation, defined by π1π2π1π2=π2, is a partial order.

Proof: (Reflexive) Since R(π) is an equivalence, already transitive, therefore

R(ππ)=kt(R(π)R(π))=kt(R(π))=R(π)

which implies ππ=π and then ππ.

(Antisymmetric)

π1π2π1π2=π2π2π1π2π1=π1

Since itself is symmetric, π1π2=π2π1, therefore π1=π2.

(Transitive)

(1)π1π2π1π2=π2(2)π2π3π2π3=π3

In (2), replace π2 by π1π2, and we have:

(3)π1π2π3=π3

Since itself is associative, in (3), replace π2π3 by π3, and we have:

(4)π1π3=π3

Therefore π1π3.

Categories:

Updated:

Comments