Cover ( == Similarity) / Partition ( == Equivalence) / Partition Lattice
0. ReferencesPermalink
- https://staff.fnwi.uva.nl/d.j.n.vaneijck2/software/demo_s5/EREL.pdf
- https://www.ellerman.org/book-draft-the-logic-of-partitions/
1. CoverPermalink
Definition: Given a set
- I.e.
- I.e.
Cover Similarity RelationPermalink
If
is a similarity relation.
Cover Similarity RelationPermalink
If
Then the family of subsets of
is a cover of
Fusion vs Fission (in Haskell)Permalink
fusion 和 fission 首先是核物理的术语:
- fusion: 核聚变
- fission: 核裂变
Haskell 中用来形容对 cover 的变形,非常形象地说明了变形的方向:
- the fusion of a cover
the finest coarsening of the cover that turns it into a partition- 等价于 cover 的 transitive closure. See Closure (Math) ▪️ Closures of Relations
- the fission of a cover
the coarsest refinement of the cover that turns it into a partition
2. PartitionPermalink
Definition: Given a set
is a cover of ,- We call elements of
pairwise disjoint or mutually exclusive - Furthermore,
- We call elements of
Definition: The elements of
Partition Equivalence RelationPermalink
If
is an equivalence relation.
Partition Equivalence RelationPermalink
Similarly, if
E.g. If
If
forms a partition on
Element
Partition
A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory.
IndexPermalink
Definition: We define the index of equivalence relation
Definition: We define the index of partition
3. Closure PropertiesPermalink
Closure under Union: ✅ Similarities (Covers) ❌ Equivalences (Partitions)Permalink
以下我们把 similarity relation 简称为 similarity,把 equivalence relation 简称为 equivalence。
在 cover 和 partition 上定义 “集合的 union 操作
假设有 relation
Proposition 1:
- If
are similarities on , then is also a similarity on- I.e. similarities are closed under union
- If
are equivalences on , then is also a similarity on - If
are equivalences on , then is not necessarily an equivalence on- I.e. equivalences are NOT closed under union
Proof: (1) Since
Since
- If
, then by symmetry; - If
, then by symmetry.
Either case we have
Therefore
(2) Obviously, following (1)
(3) Counter example:
Since
这意味着我们可以通过 ”similarities 的 union“ 去定义 ”cover 的 union“,只是这两个 union 不是同样的定义。我们用
但对 partitions 而言,
Closure under Intersection: ✅ Similarities (Covers) ✅ Equivalences (Partitions)Permalink
假设有 relation
Proposition 2:
- Similarities are closed under intersection
- Equivalences are closed under intersection
Proof: (1) Similar to (2)
(2) Suppose
Since
Since
Since
Since
Therefore
这意味着我们可以通过 ”similarities/equivalences 的 intersection“ 去定义 ”cover/partition 的 intersection“,只是这两个 intersection 不是同样的定义。我们用
但我们其实还有另一种定义
我们可以看个例子:
4. Partition LatticePermalink
构建 Lattice 的思路Permalink
假设
我们已知的情报有:
- 可以取
- i.e. the finest partition
- 可以取
- i.e. the coarsest partition
- 可以定义 partition 的 meet
所以即使暂时没有 join 的定义,根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义 的 Proposition 1,我们也可以确认
注意我们这里的思路:
- 开局一个 partition 的集合
,注意它是 finite 的 - 若我们能定义一个 meet operation
,那么就能定义出一个 relation such that - 若 relation
是 partial order,那么 就是个 poset - 根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义 的 Definition 1,既然
是个 finite poset,那么它 就是个 meet-semilattice - 再根据 Order-Theoretic Definition of Lattices (Poset == Lattice) > 更精炼的定义 的 Proposition 1,
也可以升级为 lattice
开拓思路:因为 partition 本质是个 equivalence,所以 partition lattice 本质也是个 equivalence lattice?
meet 的两种定义Permalink
给定 partition lattice
“finer-than” relation 的两种释义Permalink
给定 partition lattice
若
is finer than is coarser than
同时根据 meet 的第二个定义,当
所以
又因为 partition 的 pairwise disjoint 的特性,我们可以确定
我们再回头看 meet 的第一个定义,当
它也意味着:
所以在 relation cardinality 方面有
Coarsening & RefinementPermalink
词义 overloading 警告!Given a partition
- “to make
coarser (than itself/before)”- 这个动作我们称为 “to coarsen
” - 这个 procedure 我们称为 “the coarsening of
” - 最后得到一个新 partition
满足 ,这个结果 我们也称 “a coarsening of ”
- 这个动作我们称为 “to coarsen
- “to make
finer (than itself/before)”- 这个动作我们称为 “to refine
” - 这个 procedure 我们称为 “the refining/refinement of
” - 最后得到一个新 partition
满足 ,这个结果 我们称 “a refinement of ”
- 这个动作我们称为 “to refine
总结下规律:
- Refining:
- 使得
往 靠拢 - 使得
,意味着 equivalence class 更细碎 - 使得
,意味着 equivalence 的要求更严苛 (只有特定的几个元素才有 equivalence 关系)
- 使得
- Coarsening:
- 使得
往 靠拢 - 使得
,意味着 equivalence class 更融合 - 使得
,意味着 equivalence 的要求更水 (大多数元素都可以有 equivalence 关系)
- 使得
Closure of
join 的定义Permalink
我们已知
但如果我们能取
我们先定义几个符号:
- Given a partition
on , define- I.e.
is the backbone relation of partition
- I.e.
- Transitive closure operator
- I.e.
is a relation-to-relation function - See Closures of Relations 的具体算法
- I.e.
我们定义:
Claim: The
Proof: (Reflexive) Since
which implies
(Antisymmetric)
Since
(Transitive)
In
Since
Therefore
Comments